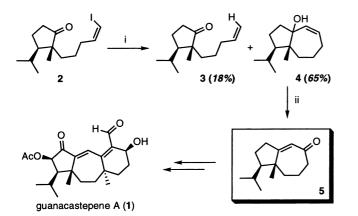


Tetrahedron Letters 43 (2002) 5605-5606

On the use of deuterium isotope effects in chemical synthesis

Gregory B. Dudley,^a Samuel J. Danishefsky^{a,b,*} and George Sukenick^a

^aLaboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Ave, New York, NY 10021, USA

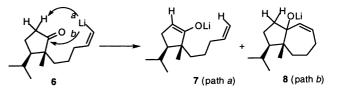

^bDepartment of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA

Received 14 May 2002; accepted 11 June 2002

Abstract—The decreased kinetic acidity of deuterium relative to hydrogen can be used to gain an advantage in the reductive cyclization of an alkenyllithium species onto a ketone. The intermediate alkenyllithium can add to the carbonyl or abstract an α -proton, giving rise to two products. The yield of the cyclized product can be increased, and the formation of the uncyclized by-product can be suppressed, by replacing the acidic protons with deuterons prior to cyclization. © 2002 Elsevier Science Ltd. All rights reserved.

During the course of our recently completed total synthesis¹ of guanacastepene A,^{2,3} we prepared hydroazulene **5** via a cycloheptenone annulation strategy,⁴ as depicted in Scheme 1.

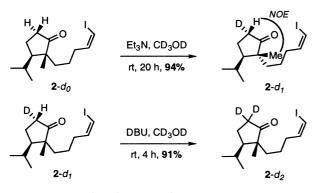
Although the cyclization reaction provided ready access to gram quantities of 5, the formation of the uncyclized by-product (3) clearly detracted from its quality. In this Letter we describe a method that indeed resulted in a sharp improvement in the ratio of productive reductive cyclization to non-productive reduction (see formation of 4 and 3).



Scheme 1. (i) 5.0 equiv. *n*-BuLi (inverse addition), 0°C, THF, 30 min; (ii) PCC, powdered sieves, CH_2Cl_2 , 70–92% (4 to 5).

In charting our course, we surmised that the alkenyllithium species (6, Scheme 2), which is derived from 2 by facile lithium-iodine exchange with *n*-butyllithium, reacts along divergent pathways to produce intermediates 7 and 8 (the precursors to 3 and 4, respectively). In path a, protium transfer from the α -carbon⁵ gives rise to the uncyclized enolate 7.⁶ By contrast, addition to the carbonyl group (path b) generates the desired tertiary alkoxide 8.

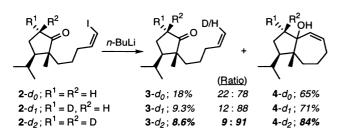
If this assumption is correct, suppression of the competing proton transfer reaction ($6 \rightarrow 7$, path a) should correspondingly increase the ratio of 8:7 and thence 4:3. We demonstrate that recourse to α -deuterated ketone substantially minimizes the problem of the competing pathway leading to enolate 7.⁷


Deuteration of ketone 2 was accomplished in two stages (Scheme 3). Initial treatment of 2 with triethylamine in CD₃OD resulted in the exchange of only one hydrogen atom. Interestingly, this mono-deuteration was stereoselective, indicating a greater kinetic lability of the α -disposed hydrogen towards the weak base.⁸ Deuterium incorporation was essentially complete within 3 h; no further change was noted after 20 h at rt.

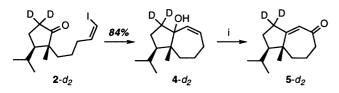
Scheme 2. Proposed competing reaction pathways.⁵

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01114-0

^{*} Corresponding author. E-mail: s-danishefsky@ski.mskcc.org


Scheme 3. Deuterium incorporation.

However, the stronger base DBU effectively mediated the formation of $2-d_2$.


The cyclization reactions of 2 were carried out using the procedure reported previously,^{1a} and the two products (3 and 4) were isolated following chromatographic purification on silica gel (Scheme 4).⁹

Although the incorporation of deuterium did not completely prevent the formation of non-cyclized reduction products **3**, it did impact the product distribution between **3** and **4** in the desired sense.¹⁰ While recourse to deuterium isotopes is a well-established modus operandi in mechanistic studies, the use of such effects to gain an advantage in preparative synthesis is perhaps an underutilized tactical option.⁷ Of course, the case at hand is particularly favorable because the isotope is easily introduced and would be readily removed en route to **1** (Scheme 5).

In summary, the decreased kinetic acidity of deuterium enabled a key cyclization reaction to be accomplished with less contamination from an unwanted by-product. This effect should be broadly applicable in cases where proton transfer reactions compete with the desired reaction pathway.

Scheme 4. Effect of deuterium incorporation on the yield and product distribution of the reductive cyclization reaction.

Scheme 5. (i) PCC, powdered sieves, CH₂Cl₂, ca. 80%.

Acknowledgements

The research was supported by the National Institutes of Health (HL25848). Postdoctoral fellowship support is gratefully acknowledged by G.B.D. (NIH 1 F32 NS11150-01). We thank Dr. Justin Miller for helpful discussions. Sylvi Rusli (NMR Core Facility, Sloan-Kettering Institute, CA 02848) is acknowledged for mass spectral analyses.

References

- (a) Dudley, G. B.; Danishefsky, S. J. Org. Lett. 2001, 3, 2399–2402; (b) Dudley, G. B.; Tan, D. S.; Kim, G.; Tanski, J. M.; Danishefsky, S. J. Tetrahedron Lett. 2001, 42, 6789–6791; (c) Tan, D. S.; Dudley, G. B.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 2002, 41, 2188–2191; (d) Lin, S.; Dudley, G. B.; Tan, D. S.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 2002, 41, 2185–2188.
- Isolation: (a) Brady, S. F.; Singh, M. P.; Janso, J. E.; Clardy, J. J. Am. Chem. Soc. 2000, 122, 2116–2117; (b) Singh, M. P.; Janso, J. E.; Luckman, S. W.; Brady, S. F.; Clardy, J.; Greenstein, M.; Maiese, W. M. J. Antibiot. 2000, 53, 256–261; (c) Brady, S. F.; Bondi, S. M.; Clardy, J. J. Am. Chem. Soc. 2001, 123, 9900–9901.
- Synthetic studies: (a) Snider, B. B.; Hawryluk, N. A. Org. Lett. 2001, 3, 569–572; (b) Snider, B. B.; Shi, B. Tetrahedron Lett. 2001, 42, 9123–9126; (c) Magnus, P.; Waring, M. J.; Ollivier, C.; Lynch, V. Tetrahedron Lett. 2001, 42, 4947–4950; (d) Mehta, G.; Umarye, J. D. Org. Lett. 2002, 4, 1063–1066; (e) Nguyen, T. M.; Lee, D. Tetrahedron Lett. 2002, 43, 4033–4046; (f) Gradl, S. F.; Kennedy-Smith, J. J.; Kim, J.; Trauner, D. Synlett. 2002, 411–414; (g) Shipe, W. D.; Sorensen, E. J. Org. Lett. 2002, 4, 2063–2066.
- 4. Piers, E.; Walker, S. D.; Armbrust, R. J. Chem. Soc., Perkin Trans. 1 2000, 635–637.
- 5. Proton transfer may occur either inter- or intramolecular fashions.
- 6. The intercession of enolate 7 in the pathway culminating in 3 was supported by isolation of the corresponding enol acetate following quenching with acetic anhydride (Ref. 1a).
- For a general discussion of isotope effects, see: Lowry, T. H.; Richardson, K. S. Isotope effects. In *Mechanism and Theory in Organic Chemistry*, 3rd ed.; HarperCollins: New York, 1987; pp. 232–244. For related applications to synthesis, see: (a) Laplaza, C. E.; Davis, W. M.; Cummins, C. C. *Organometallics* 1995, 14, 577–580; (b) Schrock, R. R.; Baumann, R.; Reid, S. M.; Goodman, J. T.; Stumpf, R.; Davis, W. M. *Organometallics* 1999, 18, 3649–3670; (c) Vedejs, E.; Little, J. J. Am. Chem. Soc. 2002, 124, 748–749.
- Assigned based on NMR analysis: ¹H, ¹³C, COSY, HMQC, and NOESY. A key NOE interaction is shown in Scheme 3.
- 9. Some erosion of deuterium labeling was observed in $3 \cdot d_1$ and $3 \cdot d_2$, indicating that perhaps iodobutane or adventitious moisture is also involved in the protonolysis of alkenyllithium 6. This erosion makes it difficult to precisely quantify the observed deuterium effect.
- 10. The failure to abrogate the non-productive reduction reaction may in part be due to competing hydrogen transfer from solvent or during the metallation event.